Sub. Code	
511101	

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2022

First Semester

Mathematics

GROUPS AND RINGS

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** questions.

- - (a) subgroup
 - (b) simple group
 - (c) symmetric subgroup
 - (d) normal subgroup
- 2. A group G is said to be if for every $a, b \in G, a.b = b.a$
 - (a) symmetric group (b) ring
 - (c) abelian (d) non-abelian group
- 3. A subgroup *N* of *G* is said to be of *G* if for every $g \in G$ and $n \in N, gng^{-1} \in N$.
 - (a) symmetric subgroup
 - (b) simple subgroup
 - (c) abelian subgroup
 - (d) normal group

4.	If G is finite group and N is a normal subgroup of G ,
	then $o(G/N) =$

	(a)	o(G) / o(N)	(b)	o(N) / o(G)
	(c)	o(N/G)	(d)	o(G)
5.	Eve	ry permutation is tl	ne pro	oduct of its ———
	(a)	indices	(b)	subgroups
	(c)	cycles	(d)	conjugates
6.	If a	$b \in G$, then b is satisfied.	aid to	be a — of a in
	G if	f there exists an ele	ment	$c \in G$ such that $b = c^{-1}ac$.
	(a)	associate	(b)	transposition
	(c)	permutation	(d)	conjugate
7.		ing is said to be nents form a group		multiplication.
	(a)	commutative ring	(b)	division ring
	(c)	field	(d)	integral domain
8.		e exists a positive :		id to be of if er m such that $ma = 0$ for all
	(a)	finite characterist	cic	
	(b)	infinite character	istic	
	(c)	countable charact	eristi	c
	(d)	uncountable chara	acteri	stic

An integral domain R with unit element is a — 9. if every ideal A in R is of the form A = (a) for some $a \in R$.

- Euclidean ring (b) maximal ideal (a)
- Principal ideal ring (d) (c) field

 $\mathbf{2}$

R7592

- 10. Let *R* be a commutative ring with unit element. An element $a \in R$ is a in *R* if there exists an element $b \in R$ such that ab = 1.
 - (a) greatest common divisor
 - (b) unit
 - (c) characteristic
 - (d) associate

 $(5 \times 5 = 25)$

Answer all questions, choosing either (a) or (b).

Part B

11. (a) State and prove any one equivalent criterion for a non-empty sub-set H of a group G is a subgroup of G.

Or

- (b) Prove that there is a one-to-one correspondence between any two right cosets of H in G.
- 12. (a) Prove that N is a normal subgroup of G if and only if $gNg^{-1} = N$ for every $g \in G$.

Or

- (b) Show that a homomorphism ϕ of G into G' with kernel K_{ϕ} is an isomorphism of G into G' if and only if $K_{\phi} = (e)$.
- 13. (a) Prove that every permutation can be uniquely expressed as a product of disjoint cycles.

Or

- (b) Show that the normalizer of an element a in G is a subgroup of G.
- 14. (a) If ϕ is a homomorphism of R into R' with kernel $I(\phi)$, then show that $I(\phi)$ is a subgroup of R under addition.

Or

(b) If U is an ideal of the ring R, then show that R/U is a ring and is a homomorphic image of R.

³

15. (a) Prove that a Euclidean ring possesses a unit element.

Or

(b) Let R be a Euclidean ring. Suppose that for $a,b,c \in R, a \mid bc$ but (a,b)=1. Then show that $a \mid c$.

Part C
$$(5 \times 8 = 40)$$

Answer any **five** questions.

- 16. Prove the following
 - (a) HK is a subgroup of G if and only if HK = KH.
 - (b) If *H* and *K* are finite subgroups of *G* of orders o(H) and o(K), respectively, then $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$.
- 17. Prove that the subgroup N of G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.
- 18. State and prove the fundamental theorem of homomorphism of groups.
- 19. State and prove Cauchy theorem.
- 20. State and prove second part of Sylow's theorem.
- 21. Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Prove that R is a field.
- 22. If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if and only if R/M is a field.
- 23. Show that every integral domain can be imbedded in a field.

4

Sub. Code	
511102	

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2022

First Semester

Mathematics

REAL ANALYSIS — I

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** questions.

- 1. If X is a metric space, if $E \subset X$ then the closure of E is
 - (a) $\overline{E} = E \cap E'$ (b) $\overline{E} = E \cup E'$
 - (c) $\overline{E} = (E \cap E') \cup E$ (d) $\overline{E} = (E \cup E') \cap E$.
- 2. Which of the following sets are compact
 - (a) N (b) Q (c) [a, b] (d) $[a, \infty]$
- 3. The series $\frac{1}{2^2+1} + \frac{\sqrt{2}}{3^2+1} + \frac{\sqrt{3}}{4^2+1} + \dots$ is
 - (a) Convergent (b) Divergent
 - (c) Oscillators (d) None of these
- 4. The sequence $\lim_{n \to \infty} [3 + (-1)^n]$ is
 - (a) Convergent (b) Divergent
 - (c) Oscillatory (d) None of these

5.	-	$\begin{bmatrix} 1 & \text{the radius of contract} \\ \hline 7^n \\ n (3x-1)^{n-1} \end{bmatrix}$	onver	gence for the power series
	(a)		(b)	$\frac{2x+1}{6}$
	(c)	7 3x-1	(d)	5 x+1
6.	The	series $\sum_{x=0}^{\infty} x^n$ if $x \ge 1$	the:	n the series
	(a)	Convergent	(b)	Diverges
	(c)	Oscillators	(d)	None of these
7.		(x, d) is a metric $(x, d) = 0 \forall x \in x$, then		space and $A \subseteq X$ and if
	(a)	A is closed	(b)	A is compact
	(c)	A is dense in X	(d)	None of these
8.	Whi	ch of the following	funct	ions are uniformly continuous
	(a)	f(x) = 1/x in (0,1)	(b)	$f(x) = x^2$ in R
	(c)	$f(x) = \sin^2 x$ in \mathbb{R}	(d)	$f(x) = \cos x$ in \mathbb{R}
9.	The	value of $\lim_{x\to 0} (x \sin 1)$	/x) is	3
	(a)	∞	(b)	-1
	(c)	0	(d)	1
10.	Con	pute the value of \lim_{x}	$\lim_{x \to 5} \frac{x}{x^2}$	$\frac{x^3-125}{x^2-8x+15}$
	(a)	0	(b)	-75/2
	(c)	75/4	(d)	75/2
			2	R7593

Part B $(5 \times 5 = 25)$

Answer all questions, choosing either (a) or (b).

11. (a) Prove that every infinite subject of a countable set A is countable.

Or

- (b) Prove that a set E is open if and only if its complement is closed.
- 12. (a) Suppose $\{s_n\}$ is monotonic then prove that $\{s_n\}$ converges if and only if it is bounded.

Or

- (b) If $\sum a_n$ converges absolutely then prove that $\sum a_n$ converges.
- 13. (a) Prove that e is irrational.

Or

- (b) If $\Sigma a_n = A$ and $\Sigma b_n = B$ then $\Sigma (a_n + b_n) = A + B$ and $\Sigma C a_n = CA$. for and fixed C.
- 14. (a) A mapping of a metric space X into a metric space Y is continuous on X iff if $f^{-1}(v)$ is open in X for every open set v in y.

 \mathbf{Or}

- (b) Let E be a non compact set in \mathbb{R} '. Then P.T. there exists a continuous function on E which is not bounded.
- 15. (a) Let f be defined on [a, b]. If f has a local maximum at a P.T. $x \in (a, b)$ and f'(x) exists then prove that $f'(x) \equiv 0$.

Or

(b) State and prove mean-value theorem.

3

Part C $(5 \times 8 = 40)$

Answer any **five** questions.

- 16. State and prove Weierstrass theorem.
- 17. State and prove ratio rest

18. P.T. $\lim_{n \to \infty} (1 + a/n)^n = e$.

- 19. Suppose f is a continuous mapping of a compact metric space x into a metric space y then prove that f(x) is compact.
- 20. State and prove Taylors theorem.
- 21. If p > 0 then $\lim_{n \to \infty} \sqrt[n]{P} = 1$.
- 22. Prove that it $P>1\sum_{n=2}^{\infty}\frac{1}{(n\log n)p}$ converges if $P\leq 1$ then the series diverges.
- 23. State and prove L'hospital's rule.

4

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2022

First Semester

Mathematics

ORDINARY DIFFERENTIAL EQUATIONS

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

 $(10 \times 1 = 10)$

Part A

Answer **all** questions.

1.	If φ_1	, $arphi_2$	are	two	solutions	of	η''	$+ a_1 \varphi' +$	$a_2 \varphi = 0$	on an
	inter	val	Ι	co	ntaining	a		point	x_0 ,	then
	$w(\varphi_1)$	$, \varphi_2)$	(x) =	Lw(q	$(\varphi_1, \varphi_2)(x_0)$	wh	ere	L is —		.
	(a)	$e^{a_1(x)}$	$(-x_0)$		(b)	e^{a_2}	(<i>x</i> - <i>x</i>)	₀)		
	(c)	e^{-a_1}	$(x - x_0)$		(d)	e^{-a}	$x_2(x-$	x_0)		

2. Polynomials of degree two are linearly dependent on

(a)	$(-\infty,\infty)$	(b)	(-∞, 0)
(c)	(0,∞)	(d)	(1,∞)

3. Given the *n*th Legendre polynomial $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \text{ the co-efficient of } x^n \text{ is}$

(a)
$$\frac{n!}{2^n (n!)^2}$$
 (b) $\frac{2n!}{2^n (n!)^2}$

(c)
$$\frac{2n!}{2^n n!}$$
 (d) $\frac{(2n!)^2}{2^n (n!)^2}$

- 4. Which of the following is called as Hermite equation,
 - (a) ay' bxy' + bay = 0 where b = 2
 - (b) a y'' + bxy' + bay = 0, where a = 2
 - (c) y'' bxy' + bay = 0, where b = 2
 - (d) y'' + bxy' + bay = 0, where b = 2
- 5. Find the singular point of the equation $a_0(x) y^n + a_1(x) y^{n-1} + \ldots + a_n(x) y = 0$.
 - (a) $a_1(x_2) = 1$
 - (b) $a_n(x_n) = \infty$
 - (c) $a_0(x_0) = 0$
 - (d) $a_0(x_0) = 1$

6. The singular point of the equation
$$x^2y'' - y' - \frac{3}{4}y = 0$$
.

- (a) $x_0 = 0$ (b) $x_0 = -1$ (c) $x_0 = -2$ (d) $x_0 = \frac{-3}{4}$
- 7. $f(x, y) = y^2$, *f* has derivatives of all orders with respect to *x* and *y* in (*x*, *y*)-plane. Find the general solution $\phi(x)$.
 - (a) $\phi(x) = \frac{-1}{x}$

(b)
$$\phi(x) = -1$$

- (c) $\phi(2) = \frac{-2}{3}$
- (d) $\phi(x) = \frac{-y}{x}$

 $\mathbf{2}$

8. First order equation y' = f(x, y) is said to have variable separated if and only if it can be written in the form

(x)

(a)
$$f(x, y) = \frac{g(x)}{h(y)}$$

(b) $f(x, y) = g(y) + h$
(c) $f(x, y) = g(x) - h$

(d)
$$f(x, y) = \frac{h(y)}{g(x)}$$

9. f, g are both functions on R. Suppose there exists positive constant ε and δ such that $|f(x, y) - g(x, y)| \le \varepsilon$ and

- $|y_1 y_2| \le \delta$ then *f*, *g* are
- (a) discontinuous function
- (b) continuous function
- (c) solution less function
- (d) approximation function
- 10. The differential equation is $y' + y \tan X = \cos X$, y(0) = 0. The value of $y(\pi)$ is
 - (a) π (b) 2π (c) -2π (d) $-\pi$
 - Part B $(5 \times 5 = 25)$

Answer all questions, choosing either (a) or (b).

- 11. (a) Find all solutions of the following equations,
 - (i) $y' + 4y = \sin 3x$
 - (ii) $y'' + y = 2\sin x$.

Or

(b) Compute the solution ϕ of y''' - xy = 0 which satisfies $\phi(0) = 1$, $\phi'(0) = 0$, $\phi''(0) = 0$.

12. (a) State and prove Existence theorem for analytic coefficients.

 \mathbf{Or}

(b) Find a solution ϕ of $y'' = -\frac{1}{2y^2}$ satisfying $\phi(0) = 1, \phi'(0) = -1.$

13. (a) Find the solution of the following equation for x > 0, $x^{3}y''' + 2x^{2}y'' - xy' + y = 0$.

Or

- (b) Compute the first four successive approximations for y' = 1 + xy and $y' = y^2$ for both the initial value is y(0) = 1.
- 14. (a) Consider the problem y' = 1 2xy, y(0) = 0.
 - since the differential equation is linear, an expression can be found for the solution. Find it
 - (ii) show that approximation ϕ_3 satisfies $|\phi(x) - \phi_3(x)| < 0.01$ for $|x| \le \frac{1}{2}$.

Or

(i)
$$y'' + e^x y' = e^x$$

(ii)
$$y^2 y'' = y'$$
.

4

15. (a) Prove that the series defining J_0 and K_0 converge for $|x| < \infty$.

Or

(b) Let ϕ_1, ϕ_2 be two solutions of L(y) = 0 on an interval *I*, and let x_0 be any point in *I*. Then ϕ_1, ϕ_2 are linearly independent on *I* if and only if $W(\phi_1, \phi_2)(x_0) \neq 0$.

Part C
$$(5 \times 8 = 40)$$

Answer any **five** questions.

16. Suppose ϕ is a solution of $y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = 0$, $\varphi(x) = \phi(x) \exp\left(a_1 \frac{x}{n}\right)$. Show that φ satisfies a linear homogeneous equation with constant co-efficients.

 $y^{(n)} + b_1 y^{(n-1)} + \dots + b_n y = 0$, with $b_1 = 0$.

- 17. Let $\phi_1, ..., \phi_n$ be *n* solutions of L(y) = 0 on an interval *I* containing a point x_0 . Then prove that $W(\phi_1, \phi_2, ..., \phi_n)(x) = e^{-a_1(x-x_0)}W(\phi_1, \phi_2, ..., \phi_n)(x_0)$.
- 18. Let *p* be any polynomial of degree *n*, and let $p = c_0 p_0 + c_1 p_1 + ... + c_n p_n$, where $c_0, c_1, ..., c_n$ are constants. Show that

$$c_k = \frac{2k+1}{2} \int_{-1}^{1} p(x) p_k(x) dx, (k = 0, 1, ..., n).$$

19. Find the solution of the second order Euler equation $x^2y'' + axy' + by = 0$, (*a*, *b* constants) and the polynomial *q* given by q(r) = r(r-1) + ar + b.

 $\mathbf{5}$

20. Find a solution ϕ of the form $\phi(x) = x^r \sum_{k=0}^{\infty} c_k x^k$, (x > 0) for the following equations;

- (a) $2x^2y'' + (x^2 x)y' + y = 0$ (b) $x^2y'' + (x - x^2)y' + y = 0$.
- 21. Let *M*, *N* be two real-valued functions which have continous first partial derivatives on some rectangle $R:|x-x_0| \le a, |y-y_0| \le b$. Then the equation M(x,y) + N(x,y)y' = 0 is exact in *R* if and only if, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ in *R*.
- 22. Let f be a continous vector-value function defined on $R: |x x_0| \le a, |y y_0| \le b(a, b > 0)$ and suppose f satisfies a Lipschitz condition on R and K a Lipschitz constant for f in R_1 then prove that $|\phi(x) \phi_k(x)| \le \frac{M(K\alpha)^{K+1}}{K(K+1)!}e^{K\infty}$ for all X in I.
- 23. State and prove Local Existence theorem.

6

Sub. Code	
511104	

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2022

First Semester

Mathematics

ANALYTIC NUMBER THEORY

(CBCS - 2022 onwards)

Time : 3 Hours

Maximum: 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the questions.

1. Every $n \ge 12$ is the sum of two — numbers.

- (a) composite(b) prime(c) odd(d) even
- 2. If *n* is square, then d(n) is ______ (a) square (b) odd (c) even (d) 1
- 4. When do you say that two lattice points (a, b) and (m, n) are mutually visible?
 - (a) (a-m, b-n) = 1 (b) (a-b, m) = 1
 - (c) (a-b, m-n) = 1 (d) (a, m-n) = 1

- 5. Theorems relating different weighted averages of the same function are called ———
 - (a) Abel's theorem
 - (b) Prime number theorem
 - (c) Tauberian theorems
 - (d) Merten's theorems
- 6. The prime number theorem implies
 - (a) $\lim_{x \to \infty} \frac{M(x)}{x}$ is undefined

(b)
$$\lim_{x \to 0} \frac{M(x)}{x} = 1$$

- (c) $\lim_{x \to \infty} \frac{M(x)}{x} = 0$
- $(d) \quad \text{None of these} \quad$
- 7. If $a \equiv b \pmod{m}$ and $\alpha \equiv \beta \pmod{m}$, then we have
 - (a) $ax + \alpha \equiv bx + y \pmod{m}$, for all x and y
 - (b) $a\alpha\beta \equiv b \pmod{m}$
 - (c) $a^n \equiv b^n \pmod{m}$, for every positive integer n
 - (d) $f(a) 1 \equiv (f(b))^2 \pmod{m}$, for every polynomial f
- 8. $5n^3 + 7n^5 \equiv$ ______ for all integers *n*. (a) 1 (mod 12) (b) 7(mod 12)
 - (c) 5(mod 12) (d) 0(mod 12)
- 9. If *P* and *Q* are odd positive integers, then $(a^2n/p) = (n/p)$ whenever
 - (a) (a, n) = 1 (b) (a, p) = 1
 - (c) (n, p) = 1 (d) None of these
- 10. What is the quadratic residue of an odd prime p if $p \equiv \pm 1 \pmod{10}$?

(a)	3	(b)	4
(c)	5	(d)	6

 $\mathbf{2}$

Part B $(5 \times 5 = 25)$

Answer **all** questions, choosing either (a) or (b).

11. (a) State and prove division algorithm.

Or

- (b) If both g and f * g are multiplicative, prove that f is multiplicative.
- 12. (a) Prove that for x > 1, $\sum_{n \le x} \phi(n) = \frac{3}{\pi^2} x^2 + O(x \log x)$, so the average order of $\phi(n)$ is $\frac{3n}{\pi^2}$.

$$\mathbf{Or}$$

- (b) State and prove Euler's summation formula.
- 13. (a) Prove that the following relations are logically equivalent

(i)
$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1$$

(ii)
$$\lim_{x \to \infty} \frac{\vartheta(x)}{x} = 1$$

(iii)
$$\lim_{x \to \infty} \frac{\psi(x)}{x} = 1$$

(b) Prove that every interval [a, b] with 0 < a < b contains a rational number of the form p/q, where p and q are prime.

14. (a) Solve the congruence

(i) $5x \equiv 3 \pmod{24}$

(ii) $25x \equiv 15 \pmod{120}$.

 \mathbf{Or}

(b) State and prove Wolstenholm's theorem.

3

15. (a) Determine whether -104 is a quadratic residue or non-residue of the prime 997.

Or

(b) State and prove Euler's criterion.

Part C $(5 \times 8 = 40)$

Answer any **five** questions.

- 16. State and prove fundamental theorem of arithmetic.
- 17. Prove that $\sum_{n \le x} d(n) = x \log x + (2c-1)x + O(\sqrt{x}), \forall x \ge 1,$ where *c* is Euler's constant.
- 18. Prove that for $x \ge 2$, $\sum_{p \le x} \left[\frac{x}{p} \right] \log p = x \log x + O(x)$, where the sum is extended over all primes $\le x$.
- 19. Prove that for every integer $n \ge 2$, $\frac{1}{6} \frac{n}{\log n} < \pi(n) < 6 \frac{n}{\log n}$.
- 20. State and prove Lagrange's theorem.
- 21. Prove that the quadratic congruence $x^2 + 1 \equiv o \pmod{p}$, where *p* is an odd prime, has a solution if and only if $p \equiv 1 \pmod{4}$.
- 22. Prove that the diaphantine equation $y^2 = x^3 + k$ has no solutions if k has the form $k = (4n-1)^3 4m^2$, where m and n are integers such that no prime $p \equiv -1 \pmod{4}$ divides m.
- 23. State and prove quadratic reciprocity law.

4

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2022

First Semester

Mathematics

OBJECT ORIENTED PROGRAMMING AND C++

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

 $(10 \times 1 = 10)$

Part A

Answer all questions.

1. Number of Object-Oriented Programming languages is

	(a)	3	(b)	2
	(c)	8	(d)	none
2.	The	extraction operator	is —	
	(a)	<<	(b)	>>
	(c)	::	(d)	.*
3.	The	member of class is		
	(a)	private	(b)	public
	(c)	both	(d)	none
4.	Whie	ch of the following i	s scoj	pe resolution operator?
	(a)	::	(b)	.*
	(c)	<<	(d)	>>

_

5.		ch pointer acts as iber functions?	an	implicit argument to all the
	(a)	this	(b)	ptr
	(c)	new	(d)	none
6.	How	many virtual const	tructo	ors in C++?
	(a)	4	(b)	2
	(c)	0	(d)	5
7.	Nun	nber of types of poly	morp	bhism is ———.
	(a)	3	(b)	2
	(c)	4	(d)	8
8.		ch one of the fol loaded?	lowir	ng operator in C++ can be
	(a)	::	(b)	.*
	(c)		(d)	=
9.		mechanism of deri lled ———.	ving	a new class from an old class
	(a)	polymorphism		
	(b)	inheritance		
	(c)	constructors		
	(d)	destructors		
10.	Whi	ch one of the follow	ing is	s third visibility modifier?
	(a)	protected	(b)	public
	(c)	private	(d)	none
			2	R7596

Part B (5 × 5 = 25)

Answer **all** questions, choosing either (a) or (b).

11. (a) Write a brief note on *switch* statement and *break* statement with examples.

Or

- (b) Discuss in detail of "cout" and "cin" with an example.
- 12. (a) Write a program to illustrate nesting of member functions in a class.

Or

- (b) Explain inline functions with an example.
- 13. (a) Explain the relation between "pointers" and "arrays".

Or

- (b) Explain dynamic constructer with example.
- 14. (a) Explain function overloading.

Or

- (b) Write a program to illustrate overloading operators.
- 15. (a) Write any six rules of virtual functions.

Or

(b) Write a program to illustrate hierarchical inheritance.

3

Part C $(5 \times 8 = 40)$

Answer any **five** questions.

- 16. Write a brief note on Object Oriented Programming with applications.
- 17. Discuss in details of constructor and destructor with suitable examples.
- 18. Write a program that would sort a list of names in alphabetic order.
- 19. Explain the operators "new" and "delete" with example.
- 20. Explain overloading unary and binary operators with example.
- 21. Write a program which uses overload operators to convert from rectangle coordinate system to polar coordinate system.
- 22. Write a program to illustrate hybrid inheritance.
- 23. Differentiate between "Private inheritance" and "Public inheritance".

4